OBSSCircuit DescriptionV1.1010/02/94 20:07 CET.Component & analysis parameters of a circuit.TINA 9.3.80.273 SFB(c) Copyright 1993,94,95,96 DesignSoft Inc. All rights reserved.; $Circuit$?CR1G?c .6?ƚE4&l nE4 EMFC iU"RpArialwڋPwQv P0-[@Arial"vLP[@ [@"Τv[@"vv\"lϤvL\"ll0"Co,C4C CArialAridv%  % RpArial@ P0500Arial000"Τv [@"Ϥvv"*Ϥv D"* "J "ovż=@ " I"Xil?CW]?<"b?L"dv%  % %  % %  % %  % %  % %  % %  % %  % %  % ==&%  '%   6==6====6===6% @=@=&%  6@==6% @@%  6@@6@@6@O@O6O% @=@=%  6=@@6% @=@=&%  6=% % %  &%  %     T^Qn BU% B^LpInput voltage (V) R^% % %  %     Td8ISY BU% B8ILT0.00TI% ( @=@=%  6@HH=H=6H@Q=Q=6Q@Y=Y=6Y@b=b=6b@j=j=6jBs=s=6s@{={=6{@==6@==6@% % &%  %     TdIY BU% BILT1.00I% ( ==%  6H==6@==6@==6@==6@==6B==6@==6@==6@==6@% % &%  %     TdIY BU% BILT2.00I% ( ==%  6H==6@==6@==6@ = =6 @==6B==6@#=#=6#@,=,=6,@4=4=64@% % &%  %     Td5IPY BU% B5ILT3.00QI% ( ====%  6=HE=E=6E@M=M=6M@V=V=6V@^=^=6^@g=g=6gBo=o=6o@x=x=6x@==6@==6@% % &%  %     TdIY BU% BILT4.00I% ( ==%  6H==6@==6@==6@==6@==6B==6@==6@==6@==6@% % &%  %     TdIY BU% BILT5.00I% ( ==%  6H% @=@=6@% % %  &%  %     % RpArialwk v<v<vvAZ v [@v0s r"v[@ v"5vvp !܀<"sv$"p !T"ܤvp !' |"$"'Cp !' |"B''C"#/@"2]@GBdv%  T BU% B LdVoltage (V)  J% ( %  % % %  %     Td33C BU% B3LT0.0043% ( 6=6=%  6@=<.<.6@.<<6@<<6@% % &%  %     Td3 BU% BLT1.004% ( 66%  6@<<6@<<6@<<6@% % &%  %     Td3 BU% BLT2.004% ( 66%  6@<<6@<<6@<<6@% % &%  %     Td3 BU% BLT3.004% ( 66%  6@<{<{6@{<l<l6@l<^<^6@^% % &%  %     TdE3U BU% BELT4.004E% ( 6O6O%  6@O<@<@6@@<1<16@1<"<"6@"% % &%  %     Td 3 BU% B LT5.004 % ( 66%  6@% % @6@6&%  6D6D66H6H66M6M66Q6Q66U6U66Y6Y66]6]66b6b66f6f66j6j66n6n66s6s66w6w66{6{66666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666 6 66666666666666666#6#66(6(66,6,66060664646686866=6=66A6A66E6E66I6I66M6M66R6R66VV6ZZ6^^6bb6gg6kk6oo6ss6xx6||66666666666666666666666666666666666666666666666666||6xx6ss6oo6kk6gg6bb6^^6ZZ6VV6RR6MM6II6EE6AA6==6886446006,,6((6##666666  66666666666666666666666666666666666666666666666666666666666666666666666666{6{66w6w66s6s66n6n66j6j66f6f66b6b66]6]66Y6Y66U6U66Q6Q66M6M66H6H66D6D66@6RpMS Sans Serif~   MS Sans Serif o(̕#""""L""(" IL"((""X"wɖw\""wo("@"dv%  % % % VER=1.0Font0=Verdana,14Font1=Verdana,14,BRect0=2,0,0,85,22Rect1=1,0,0,85,10Rect2=1,0,10,10,17Rect3=1,10,10,75,17Rect4=1,75,10,85,17Rect5=1,0,17,50,22Rect6=1,50,17,85,22Text0=0,2,2,TitleText1=0,2,11,SizeText2=0,2,18,DateText3=0,12,11,Document No.Text4=0,77,11,RevText5=0,52,18,SheetText6=0,70,18,ofField0=1,T,11,2,80Field1=1,T,11,5,80Field2=1,S,4,13,5Field3=1,T,14,13,40Field4=1,R,78,13,6Field5=1,D,12,18,30Field6=1,P,64,18,3Field7=1,A,77,18,3F0=Texas Instruments F1=TLV7031F5=08/08/2017q+@q+ Arial=Please see inside the model netlist for parameters that are being modeled. Symbol????333333??;PHP8PHP8T_08F8723020170609205342?T_08F86E7020170609205342?hhT_08F866F020170609205342Vout;T_08F8507020170609205342;((T_08F84CB020170609205342?T_08F848F020170609205342Ch8hh8T_11EFDE4020170609205645Vout?h@h@T_11EFE20020170609205645Vout;T_11EE1E2020170609205716;PPT_11ECCAD020170609205729?PPPT_11E83C4020170609205821;T_14A39CE020170928163436DB V1T_0B6E7F8020170609205342 JP100 (V)@DB( V2T_0B6E79A020170609205342 JP100 (V) BR2T_0B6E6DE020170609205342R_AX300_W100 (R)j@@?Y@BrVoutT_0B6E566020170609205342 NOPCB (VF) BR1T_0B6E8B4020170609205633R_AX300_W100 (R).A@?Y@ BR3T_0B6E912020170609205707R_AX300_W100 (R)@$A@?Y@BP VG1T_080865F020170609210158 JP100 (VG)?j@Iz>DBP V3T_080871B020170609210209Battery_9V_V (V)@:BxUHU1T_127528B020170928164837 TLV7031TLV7031[C:\Users\a0217140\AppData\Local\Temp\DesignSoft\{Tina9-Industrial-09262017-160208}\TLV7031SCK#TLV7031Label~&~&X(+d*VINPIN VEEMAIN V  @d*VINMIN VEEMAIN V @d*VCCP  @d*VOUTD<  @d*VEEP  @h 00g"+ Courier New?g"+ Courier New?g"- Courier New?g"- Courier New?PC@PC@* * TLV7031N*****************************************************************************J* (C) Copyright 2017 Texas Instruments Incorporated. All rights reserved.N*****************************************************************************H** This model is designed as an aid for customers of Texas Instruments.K** TI and its licensors and suppliers make no warranties, either expressedH** or implied, with respect to this model, including the warranties of F** merchantability or fitness for a particular purpose. The model isK** provided solely on an "as is" basis. The entire risk as to its quality)** and performance is with the customer.N******************************************************************************A** Released by: WEBENCH(R) Design Center, Texas Instruments Inc.* Part: TLV7031* Date: 08/08/2017* Model Type: All In One* Simulator: TINA* Simulator Version: 9* EVM Order Number: N/A * EVM Users Guide: N/A * Datasheet: SNVSAX0 MAY 2017** Model Version: 1.0*N****************************************************************************** * Updates:** Version 1.0 : Release to Web*N***************************************************************************** * Notes:)* The following parameters are modeled: G* VIO, VHYS, VCM, IB, IOS, VOH, VOL, CMRR, PSRR, Isource, Isink, Icc, * TPHL, TPLH, TR, TFN*****************************************************************************'.subckt TLV7031 VINP VOUT VCC VEE VINM'XI0 VINP VOUT VCC VEE VINM TLV7031_HT1.ends.subckt ANALOG_BUFFER VOUT VINR0 VIN 0 1e9R1 VOUT 0 1e9E0 VOUT 0 VIN 0 1.ends ANALOG_BUFFERB.subckt TLV7031_OUTPUTCIR_HT1 PD VCC VCCMAIN VEE VEEMAIN VIN VOUTDXI25 NET75 NET092 OutputCir_IscDiodeIdeal PARAMS: IS=10e-15 N=50e-3CXI23 NET79 NET76 OutputCir_IscDiodeIdeal PARAMS: IS=10e-15 N=50e-3LXIVOL VOL VEE VIMONINV OutputCir_VOHVOL PARAMS: VSUPPLYREF=0 VOUTvsIOUT_X1=T+ {ABS(0)} VOUTvsIOUT_Y1=225e-3 VOUTvsIOUT_X2= {ABS(-10e-3)} VOUTvsIOUT_Y2=225e-3+ RXIVOH VCC VOH VIMON OutputCir_VOHVOL PARAMS: VSUPPLYREF=5 VOUTvsIOUT_X1= {ABS(0)}C+ VOUTvsIOUT_Y1=4.8 VOUTvsIOUT_X2= {ABS(10e-3)} VOUTvsIOUT_Y2=4.8YXISOURCEVLIMIT NET064 NET76 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=1 IscVsVsupply_X1=3Q+ IscVsVsupply_Y1= {ABS(40e-3)} IscVsVsupply_X2=5 IscVsVsupply_Y2= {ABS(40e-3)}+ XXISINKVLIMIT NET047 NET092 VCC VEE OutputCir_IscVlimit PARAMS: RIsc=1 IscVsVsupply_X1=3S+ IscVsVsupply_Y1= {ABS(-40e-3)} IscVsVsupply_X2=5 IscVsVsupply_Y2= {ABS(-40e-3)}+ XI14 NET070 NET15 DiodeIdealXI15 NET068 VOL DiodeIdeal-XI0 VCCMAIN VEEMAIN VIMON PD OutputCir_ILOAD'HVIMONINV VIMONINV 0 VCURSINKDETECT 1#HVIMON VIMON 0 VCURSOURCEDETECT 1RVIMONINV VIMONINV 0 1e9R2 NET22 NET53 430RVIMON VIMON 0 1e9RISC NET092 NET15 1XI11 NET76 NET15 ANALOG_BUFFERXI2 NET22 VIN ANALOG_BUFFERVPROBE3 NET070 VOH 0V3 NET79 NET047 0V4 NET75 NET064 0VPROBE4 NET068 NET15 0VCURSOURCEDETECT NET15 NET34 0VCURSINKDETECT VOUT NET34 0VPROBE1 NET53 NET17 0LOUT NET17 NET092 500e-12.ends TLV7031_OUTPUTCIR_HT1A.subckt VINRANGE1 VCC VEE VIN VOUT PARAMS: VIL=100e-3 VIH=100e-3XIDVIH NET12 NET16 DiodeIdealXIDVIL NET16 NET20 DiodeIdealR0 VIN NET16 1e-3V0 NET16 VOUT 0VIL NET20 VEE {VIL} VIH VCC NET12 {VIH} .ends VINRANGE1N.subckt ZIN IN1 IN2 OUT1 OUT2 PARAMS: R5=100e-3 R4=100e-3 C3=50e-15 C2=50e-15#+ C1=50e-15 R2=10e9 R1=10e9 R3=1e9R5 IN2 OUT2 {R5} R4 IN1 OUT1 {R4} C3 OUT1 OUT2 {C3} C2 OUT2 0 {C2} C1 OUT1 0 {C1} GR2 OUT2 0 OUT2 0 {1/R2} GR1 0 OUT1 0 OUT1 {1/R1} !GR3 OUT1 OUT2 OUT1 OUT2 {1/R3} .ends ZIN+.subckt TLV7031_HT1 VINP VOUT VCC VEE VINMBXAHDLI73 NET076 VINM_INT NET31 VCC_INT VEE_INT NET073 HPA_COMPHYSDXI72 POWER VCC_INT VCC VEE_INT VEE NET17 VOUT TLV7031_OUTPUTCIR_HT1HXI56 VCC_INT VEE_INT NET22 VINM_INT VINRANGE1 PARAMS: VIL=0 VIH=-100e-3HXI54 VCC_INT VEE_INT NET21 VINP_INT VINRANGE1 PARAMS: VIL=0 VIH=-100e-34XAHDLINV1 PDINV POWER VCC_INT VEE_INT HPA_INV_IDEAL5XAHDLINV3 NET095 PDINV VCC_INT VEE_INT HPA_INV_IDEALOXI40 VCC VEE POWER VEE_INT VCC_INT Iq PARAMS: IOFF=1e-9 ION_X1=0 ION_Y1=300e-9L+ ION_X2=1.6 ION_Y2=300e-9 ION_X3=1.9 ION_Y3=300e-9 ION_X4=12 ION_Y4=300e-9V2 NET21 NET11 0V0 NET11 NET1 0V1 NET073 0 10.5e-3V3 VINP_INT NET076 6.25e-3MXI53 VINP VINM NET1 NET2 ZIN PARAMS: R5=100e-3 R4=100e-3 C3=50e-15 C2=50e-15#+ C1=50e-15 R2=10e9 R1=10e9 R3=1e9XXI19 VCC_INT VEE_INT NET2 NET12 PSRR PARAMS: PSRRP_DC=-80 PSRRP_f3dB=100e9 PSRRN_DC=-80+ PSRRN_f3dB=90e9YXI21 NET12 NET22 NET12 CMRR PARAMS: CMRR_DC=-70 CMRR_f3dB=50e9 CMRR_f3dB_FudgeFactor=3.4NXI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=5e-12 Ioffset=1e-12 TA=25A+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=-9.925e-6 Ibiasm=-10.075e-6R0 NET17 0 50R14 VCC_INT NET095 10e6!T0 NET31 0 NET17 0 Z0=50 TD=5e-6XI13 VEE_INT VEE ANALOG_BUFFERXI12 VCC_INT VCC ANALOG_BUFFER.ends TLV7031_HT1".SUBCKT HPA_INV_IDEAL 1 2 VDD VSSAE1 2 0 VALUE = { IF( V(1)> (V(VDD)+V(VSS))/2, V(VSS), V(VDD) ) }.ENDS1.SUBCKT HPA_COMPHYS INP INN OUT_OUT VDD VSS VHYS/EVMID VMID 0 VALUE = { ( V(VDD) + V(VSS) )/2 }UEINPNEW INPNEW 0 VALUE = { IF( ( V(OUT) < V(VMID) ), V(INP),( V(INP) + V(VHYS) ) ) }DEOUT OUT 0 VALUE = { IF( ( V(INPNEW) > V(INN) ), V(VDD), V(VSS) ) }R1 OUT OUT_OUT 1C1 OUT_OUT 0 1e-12.ENDS.SUBCKT AVG VIN1 VIN2 VOUT0E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 }.ENDS.SUBCKT CMRR A B C PARAMS:+ CMRR_DC = -100+ CMRR_f3dB = 50e3+ CMRR_f3dB_FudgeFactor = 3.4 .PARAM CMRR = {0-CMRR_DC}5.PARAM FCMRR = {CMRR_f3dB * CMRR_f3dB_FudgeFactor}:X1 A B C 0 CMRR_NEW PARAMS: CMRR = {CMRR} FCMRR = {FCMRR}.ENDS.SUBCKT DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT DomPoleBias VIN1 VIN2 VOUT5E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 * 1/2} R1 VOUT 0 1G.ENDS:.SUBCKT GmItail Vinp Vinm Ioutp Ioutm VEE VCC PD PARAMS:+ Choice = 2+ Gm = 3.77e-2 + SBF = 1 + ITAILMAX_X1 = { 3.0 }+ ITAILMAX_Y1 = { 10m }+ ITAILMAX_X2 = { 5.0 }+ ITAILMAX_Y2 = { 10m }+ ITAILMIN_X1 = { 3.0 }+ ITAILMIN_Y1 = { 10m }+ ITAILMIN_X2 = { 5.0 }+ ITAILMIN_Y2 = { 10m }1.PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }1.PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }0.PARAM Choice3 = { IF ( Choice == 3, 1, 0 ) }1.PARAM Choice11 = { IF ( Choice == 11, 1, 0 ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1.PARAM ITAILMAX_SLOPE = D+ { ( ITAILMAX_Y2 - ITAILMAX_Y1 ) / ( ITAILMAX_X2 - ITAILMAX_X1 ) }.PARAM ITAILMAX_INTCP = 1+ { ITAILMAX_Y1 - ITAILMAX_SLOPE * ITAILMAX_X1 }EITAILMAX ITAILMAX 0 VALUE = 4+ { ITAILMAX_SLOPE * V(VCC,VEE) + ITAILMAX_INTCP }.PARAM ITAILMIN_SLOPE = D+ { ( ITAILMIN_Y2 - ITAILMIN_Y1 ) / ( ITAILMIN_X2 - ITAILMIN_X1 ) }.PARAM ITAILMIN_INTCP = 1+ { ITAILMIN_Y1 - ITAILMIN_SLOPE * ITAILMIN_X1 }EITAILMIN ITAILMIN 0 VALUE = 4+ { ITAILMIN_SLOPE * V(VCC,VEE) + ITAILMIN_INTCP },G1 IOUTP IOUTM VALUE = { ( 1-V(PDINV) ) * (K+ Choice1 * ( LIMIT ( Gm * V(VINP,VINM) , -V(ITAILMIN), V(ITAILMAX) ) ) +V+ Choice2 * ( Gm * (V(ITAILMAX)/Gm) * TANH( V(VINP,VINM) / (V(ITAILMAX)/Gm) ) ) + d+ Choice3 * ( Gm * V(VINP,VINM) / ( 1 + Gm/V(ITAILMAX) * ABS( V(VINP,VINM) ) ) ) + e+ Choice11 * ( LIMIT ( ( Gm * EXP ( LIMIT ( SBF * ABS(V(VINP,VINM)) , -LOG(1E100), LOG(1E100) ) ) ) G+ * V(VINP,VINM) , -V(ITAILMIN), V(ITAILMAX) ) ) ++ 0 ) }.ENDS .SUBCKT Ibias VINP VINM PARAMS:+ Choice = 1+ Ibias = -10u+ Ioffset = 150n+ TA = 25+ IbiasDrift = 0+ IoffsetDrift = 0+ Ibiasp = -9.925u+ Ibiasm = -10.075u..PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }..PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }C.PARAM Ib = { Choice1 * Ibias + Choice2 * (Ibiasp + Ibiasm)/2 }D.PARAM Io = { Choice1 * Ioffset + Choice2 * ABS(Ibiasp - Ibiasm) } FEIb Ib 0 VALUE = { IbiasDrift * TEMP + ( Ib - IbiasDrift * TA ) }FEIo Io 0 VALUE = { IoffsetDrift * TEMP + ( Io - IoffsetDrift * TA ) }(GIbp VINP 0 VALUE = { V(Ib) + V(Io)/2 }(GIbm VINM 0 VALUE = { V(Ib) - V(Io)/2 }.ENDS.SUBCKT Inoise A B PARAMS:+ X = { 1m }+ Y = { 100f } + Z = { 1f }BX1 A B FEMT PARAMS: NLFF = { Y/1f } FLWF = { X } NVRF = { Z/1f }.ENDS..subckt Iq VCCmain VEEmain PD VEE VCC PARAMS:+ IOFF = { 1n }+ ION_X1 = { 0.0 }+ ION_Y1 = { 1m }+ ION_X2 = { 1.6 }+ ION_Y2 = { 1m }+ ION_X3 = { 1.9 }+ ION_Y3 = { 1m }+ ION_X4 = { 12.0 }+ ION_Y4 = { 1m }OEION_SEG1 ION_SEG1 0 VALUE = { IF ( V(VCC,VEE) <= ION_X2, 1, 0 ) }YEION_SEG2 ION_SEG2 0 VALUE = { IF ( V(VCC,VEE) > ION_X2 & V(VCC,VEE) <= ION_X3, 1, 0 ) }REION_SEG3 ION_SEG3 0 VALUE = { IF ( V(VCC,VEE) > ION_X3 , 1, 0 ) }F.PARAM ION_SEG1_SLOPE = { ( ION_Y2 - ION_Y1 ) / ( ION_X2 - ION_X1 ) }=.PARAM ION_SEG1_INTCP = { ION_Y1 - ION_SEG1_SLOPE * ION_X1 }F.PARAM ION_SEG2_SLOPE = { ( ION_Y3 - ION_Y2 ) / ( ION_X3 - ION_X2 ) }=.PARAM ION_SEG2_INTCP = { ION_Y2 - ION_SEG2_SLOPE * ION_X2 }F.PARAM ION_SEG3_SLOPE = { ( ION_Y4 - ION_Y3 ) / ( ION_X4 - ION_X3 ) }=.PARAM ION_SEG3_INTCP = { ION_Y3 - ION_SEG3_SLOPE * ION_X3 }WEION ION 0 VALUE = { V(ION_SEG1) * ( ION_SEG1_SLOPE * V(VCC,VEE) + ION_SEG1_INTCP ) +E+ V(ION_SEG2) * ( ION_SEG2_SLOPE * V(VCC,VEE) + ION_SEG2_INTCP ) +G+ V(ION_SEG3) * ( ION_SEG3_SLOPE * V(VCC,VEE) + ION_SEG3_INTCP ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1KG1 VCCMAIN VEEMAIN VALUE = { V(ION) * ( 1-V(PDINV) ) + IOFF * V(PDINV) } .ends*.SUBCKT OutputCir_ILOAD VDD VSS VIMON PD$X1 PD PDINV VDD VSS LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1AG1 VDD 0 VALUE = {IF(V(VIMON) >= 0, V(VIMON)*( 1-V(PDINV) ), 0)}AG2 VSS 0 VALUE = {IF(V(VIMON) < 0, V(VIMON)*( 1-V(PDINV) ), 0)}.ENDS1.SUBCKT OutputCir_IscDiodeIdeal NEG POS PARAMS: + IS = 1E-14 + N = 50m:G1 POS NEG_INT VALUE = { IF ( V(POS,NEG_INT) <= 0 , IS, S+ IS * ( EXP ( V(POS,NEG_INT)/25m * 1/N ) - 0 ) ) } V1 NEG_INT NEG {-N*0.8}.ENDS0.SUBCKT OutputCir_IscVlimit A B VCC VEE PARAMS:+RIsc = { 1 }+IscVsVsupply_X1 = { 3.0 }+IscVsVsupply_Y1 = { 75m }+IscVsVsupply_X2 = { 5.0 }+IscVsVsupply_Y2 = { 100m }.PARAM IscVsVsupply_SLOPE = T+ { ( IscVsVsupply_Y2 - IscVsVsupply_Y1 ) / ( IscVsVsupply_X2 - IscVsVsupply_X1 ) }.PARAM IscVsVsupply_INTCP = =+ { IscVsVsupply_Y1 - IscVsVsupply_SLOPE * IscVsVsupply_X1 }&EIscVsVsupply IscVsVsupply 0 VALUE = <+ { IscVsVsupply_SLOPE * V(VCC,VEE) + IscVsVsupply_INTCP }*E1 A B VALUE = { V(IscVsVsupply) * RIsc }.ENDSO.SUBCKT OutputCir_RecoveryAssist VINP VINM IOUTP IOUTM VCC VEE RecoverySignal*X1 RecoverySignal RS VCC VEE LOGIC1 0 DLSVLOGIC1 LOGIC1 0 1NG1 IOUTP IOUTM VALUE = { LIMIT ( 1m * V(VINP,VINM) * V(RS) , -100m, 100m ) }.ENDS).SUBCKT OutputCir_Rout B A VIMON PARAMS:+ Ro_Iout_0A = 100 + RIsc = 1 + Isc = 100m+ Islope_const = 1/100'.PARAM Islope = { Islope_const * Isc }`G1 A B VALUE = { V(A,B) * 1 / ( (Ro_Iout_0A - RIsc) * Islope / ( Islope + ABS(V(VIMON)) ) ) }.ENDS+.SUBCKT OutputCir_VOHVOLDiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS(.SUBCKT OutputCir_VOHVOL A B C PARAMS:+ VSUPPLYREF = {2.5} + VOUTvsIOUT_X1 = { ABS(0) }+ VOUTvsIOUT_Y1 = { 2.4 } + VOUTvsIOUT_X2 = { ABS(100m) }+ VOUTvsIOUT_Y2 = { 2.1 }*.PARAM VDROPvsIOUT_X1 = { VOUTvsIOUT_X1 }:.PARAM VDROPvsIOUT_Y1 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y1) }*.PARAM VDROPvsIOUT_X2 = { VOUTvsIOUT_X2 }:.PARAM VDROPvsIOUT_Y2 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y2) }.PARAM VDROPvsIOUT_SLOPE = P+ { ( VDROPvsIOUT_Y2 - VDROPvsIOUT_Y1 ) / ( VDROPvsIOUT_X2 - VDROPvsIOUT_X1 ) }.PARAM VDROPvsIOUT_INTCP = :+ { VDROPvsIOUT_Y1 - VDROPvsIOUT_SLOPE * VDROPvsIOUT_X1 }$EVDROPvsIOUT VDROPvsIOUT 0 VALUE = 4+ { VDROPvsIOUT_SLOPE * V(C) + VDROPvsIOUT_INTCP }"E1 A B VALUE = { V(VDROPvsIOUT) }.ENDS!.SUBCKT PSRR VDD VSS A B PARAMS:+ PSRRP_DC = -100+ PSRRP_f3dB = 100k+ PSRRN_DC = -90+ PSRRN_f3dB = 90k".PARAM PSRRP = {0-PSRRP_DC}".PARAM PSRRN = {0-PSRRN_DC}".PARAM FPSRRP = {PSRRP_f3dB}".PARAM FPSRRN = {PSRRN_f3dB}'X1 VDD VSS A B 0 PSRR_DUAL_NEW PARAMS:$+ PSRRP = {PSRRP} FPSRRP = {FPSRRP}$+ PSRRN = {PSRRN} FPSRRN = {FPSRRN}.ENDS+.SUBCKT RecoveryCircuit_DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT Vinoffset POS NEG PARAMS: + TA = 25+ VOS = 500u+ DRIFT = 10u ?E1 POS NEG VALUE = { DRIFT * TEMP + ( VOS - DRIFT * TA ) }.ENDS$.SUBCKT Vinrange_DiodeIdeal NEG POSCG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*100k ) }R0 POS NEG 1000G.ENDS.SUBCKT Vnoise A B PARAMS:+ X = { 1m }+ Y = { 100n }+ Z = { 5n }?X1 A B VNSE PARAMS: NLF = { Y/1n } FLW = { X } NVR = { Z/1n }.ENDS6.SUBCKT VNSE 1 2 PARAMS: NLF = 10 FLW = 4 NVR = 4.6$.PARAM GLF={PWR(FLW,0.25)*NLF/1164}.PARAM RNV={1.184*PWR(NVR,2)}/.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVN D2 8 0 DVNE1 3 6 7 8 {GLF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10 R4 5 0 {RNV} R5 5 0 {RNV} R6 3 4 1E9 R7 4 0 1E9 E3 1 2 3 4 1 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS=.SUBCKT FEMT 1 2 PARAMS: NLFF = 0.1 FLWF = 0.001 NVRF = 0.1'.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164} .PARAM RNVF={1.184*PWR(NVRF,2)}1.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVNF D2 8 0 DVNFE1 3 6 7 8 {GLFF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10R4 5 0 {RNVF}R5 5 0 {RNVF} R6 3 4 1E9 R7 4 0 1E9G1 1 2 3 4 1E-6 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDSL.SUBCKT PSRR_SINGLE VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}E1 VO VI 1 GNDF 1C2 VDD VSS 10P.ENDSP.SUBCKT PSRR_SINGLE_NEW VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VO VI 1a GNDF 1C2 VDD VSS 10P.ENDS,.SUBCKT PSRR_DUAL VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}*E1 VO VI VALUE = {V(1,GNDF) + V(3,GNDF)}C3 VDD VSS 10P.ENDS0.SUBCKT PSRR_DUAL_NEW VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}EC 301 GNDF 3 GNDF 1(GRC 301 302 VALUE = { V(301,302)/1e6 }CC 302 GNDF 1e3ED 3 3a VALUE = {V(302,GNDF)},E1 VO VI VALUE = {V(1a,GNDF) + V(3a,GNDF)}C3 VDD VSS 10P.ENDSC.SUBCKT CMRR_OLD VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}E1 VI VO 1 GNDF 1.ENDSB.SUBCKT CMRR_NEW VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}EA 101 GNDF 1 GNDF 1&GRA 101 102 VALUE = {V(101,102)/1e6}CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VI VO 1a GNDF 1.ENDS0.SUBCKT DLS 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) < (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS3.SUBCKT DLSINV 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) > (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS#.SUBCKT SWITCH_IDEAL A B C PARAMS:+ Ron = 100m+ Roff = 0.1GYG1 A B VALUE = { V(A,B) * 1 / ( Roff/2 * TANH( 0 - ( 20*V(C) - 5 ) ) + Roff/2 + Ron ) } R1 A 0 1000G R2 B 0 1000G.ENDS&.MODEL VINRANGE_DIDEAL D N=1m'.MODEL RECOVERYCIRCUIT_DIDEAL D N=1m (.MODEL OUTPUTCIR_ISC_DIDEAL D N=0.1m'.MODEL OUTPUTCIR_VOHVOL_DIDEAL D N=1m .MODEL DBASIC DVOUTVCCVINPVEEVINMBfT_0B6E4AA020170609205342 NOPCB (GND)BfPT_0B6E44C020170609205342 NOPCB (GND)Bf@T_0B6E390020170609205342 NOPCB (GND)BfPHT_0B6E9CE020170609205803 NOPCB (GND)BfPT_08086BD020170609210202 NOPCB (GND)8?%-_@EMbP??ư>*dd@Y@VG1[dddd$@?.A.A.AeAMbP?@@?ư>ư> $ 4@D@ =B?& .>??ư>ư>ư>ư>ư>ư>?I@?I@?I@& .>#i;@& .>-q=ư>MbP?-q=MbP?vIh%<=@@D@& .>?MbP?4@?{Gz?ꌠ9Y>)F@?+= _BKH9$@Y@& .>ư>?.AMbP??????I@Default analysis parameters. These parameters establish convergence and sufficient accuracy for most circuits. In case of convergence or accuracy problems click on the "hand " button to Open other parameter sets.?Xd I@nMbP?{Gz?{Gz?MbP????|=Hz>}Ô%ITNoname