OBSSCircuit DescriptionV1.1010/02/94 20:07 CET.Component & analysis parameters of a circuit.TINA 9.3.80.273 SFB(c) Copyright 1993,94,95,96 DesignSoft Inc. All rights reserved.; $Circuit$?<+ɊȊ??ƚ0zl C0 EMF|<O XRpArial0100000000000000000dv%  % RpArial 0Y#1198207231003598080uxbE1H( 1 01O00000000000000000cݙ7@WA?Edv%  % %  % %  % %  % %  % %  % %  % %  % %  % &%  '%   6  6 6% BB&%  6B6% BB%  6% BB%  6BB6% BB&%  6% % %  &%  %     T4`CxA@A4LpInput voltage (V) a4% % %  %     Tx;!i0xA@A;!L\-30.00m j!% ( BB%  6BMM6MXX6Xcc6cnn6nyy6y6666% % &%  %     Tx!0xA@A!L\-15.00m !% ( %  66666666  6 6% % &%  %     Td!00xA@A!LT0.001!% (   %  6 ++6+6666AA6ALL6LWW6Wbb6bmm6mxx6x6% % &%  %     Tp!0xA@A!LX15.00m !% ( %  6666666666% % &%  %     Tp! 0xA@A!LX30.00m !!% ( %  6% BB6B% % %  &%  %     % RpArial!F1 u!Fk^0E,u!FE,u/!F[^hEOE\u O=/w^ 0Eu EERv!F0~ ENAIdE/C!F0~E B0~/CE#/@EV_@A  Bdv%  TqxA@A LdVoltage (V)  D% ( %  % % %  %     Td 6xA@A LT0.007 % ( 99%  6B@@6B@@6B@@6B@@6B>>6B@@6B@@6B@@6B@@6B% % &%  %     Td6xA@ALT6.007% ( 99%  6B@@6B@z@z6Bz@m@m6Bm@`@`6B`>S>S6BS@F@F6BF@9@96B9@,@,6B,@@6B% % &%  %     Tl 6xA@A LX11.987 % ( 99%  6B% % gg&%  6kk6nn6rr6vv6yy6}}66666666666666666666666666666666666666  6  66666  6##6''6++6..6226666996==6AA6DD6HH6LL6OO6SS6WW6[[6^^6bb6ff6ii6mm6qq6tt6xx6||66666666666666666666666666666666666666666666666666||6xx6tt6qq6mm6ii6ff6bb6^^6[[6WW6SS6OO6LL6HH6DD6AA6==6996666226..6++6''6##666666  6  66666666666666666666666666666666666666}}6yy6vv6rr6nn6kk6gRpMS Sans SerifBpEEEJLE  EBp,L  z E  E E0 E I E0 0 wEPEֿPEֿDEuP*uEdv%  % % % VER=1.0Font0=Verdana,14Font1=Verdana,14,BRect0=2,0,0,85,22Rect1=1,0,0,85,10Rect2=1,0,10,10,17Rect3=1,10,10,75,17Rect4=1,75,10,85,17Rect5=1,0,17,50,22Rect6=1,50,17,85,22Text0=0,2,2,TitleText1=0,2,11,SizeText2=0,2,18,DateText3=0,12,11,Document No.Text4=0,77,11,RevText5=0,52,18,SheetText6=0,70,18,ofField0=1,T,11,2,80Field1=1,T,11,5,80Field2=1,S,4,13,5Field3=1,T,14,13,40Field4=1,R,78,13,6Field5=1,D,12,18,30Field6=1,P,64,18,3Field7=1,A,77,18,3F0=Texas Instruments F1=TLV1805Q1F5=10/23/2018x1@x1 Arial=Please see inside the model netlist for parameters that are being modeled. Symbol????333333??;H8H8T_176FC1F020180522145716;xxT_176FD4B020180522145721?xxT_176FEB3020180522145726;T_176FEEF020180522145726;``````T_170955A020180522150535;`x```x``T_1708BBE020180522150556;``x```x`T_1708B82020180522150556;hhxhhxT_1872FA4020180522150621ChxphxxppT_186A66B020180522150632;PhPPhPT_17065A3020180522150640DB8 V1T_156CFC0020180522145716 JP100 (V)(@DB V2T_156D07C020180522145721 JP100 (V)Brx`VoutT_167080A020180522150537 NOPCB (VF)DBh V3T_1670982020180522150609 JP100 (V)@BhP &VG1T_16709E0020180522150629 Sgen (VG)?j@dy= B`xC2T_156CA3E020180522151607CP_CYL300_D700_L1400 (C) p ~=@eAY@?:BZ8U1T_0BE2BD1020181023160433  TLV1805Q1 TLV1805Q1]C:\Users\a0217140\AppData\Local\Temp\DesignSoft\{Tina9-Industrial-09262017-160208}\TLV1805Q1SCK# TLV1805Q1Label[[xXd*INP0.5)/1E11WR( @d*INNR(NVR,2)PWR( @d*VP,0.25)*NLF/116  @d*VND`*   @d*OUT  @d*SDP@ @h 00g"+ Courier New?g"+ Courier New?g"- Courier New?g"- Courier New?gSDArialm۶m?S@S@ * TLV1805Q1N*****************************************************************************J* (C) Copyright 2018 Texas Instruments Incorporated. All rights reserved.N*****************************************************************************H** This model is designed as an aid for customers of Texas Instruments.K** TI and its licensors and suppliers make no warranties, either expressedH** or implied, with respect to this model, including the warranties of F** merchantability or fitness for a particular purpose. The model isK** provided solely on an "as is" basis. The entire risk as to its quality)** and performance is with the customer.N******************************************************************************D* This model is subject to change without notice. Texas Instruments:* Incorporated is not responsible for updating this model*N******************************************************************************'** Released by: Texas Instruments Inc.* Part: TLV1805Q1* Date: 10/23/2018* Model Type: All In One* Simulator: PSPICE !* Simulator Version: 16.2.0.p001* EVM Order Number: N/A * EVM Users Guide: N/A "* Datasheet: SNOSD50 APRIL 2018** Model Version: 2.0*N****************************************************************************** * Updates:** Version 1.0 : Release to Web&* 2.0 : Improving Convergence*N***************************************************************************** * Notes:)* The following parameters are modeled: @* VIO, VHYS, VIL, VIH, IB, IOS, VOH, VOL, Isource, Isink, Icc, #* Iq, Iq_down, TPHL, TPLH, TR, TF *N*****************************************************************************'.subckt TLV1805Q1 INP INN VP VN OUT SD'XI0 INP OUT VP VN SD INN TLV1805Q1_HT2.ends.subckt BALUN V VCM VN VPR9 V NET023 1e-6R4 NET035 VCM 1e-6R5 NET023 NET016 1e-6R3 NET027 VN 1e-6R6 0 NET021 1e-6R7 NET023 NET019 1e-6R8 0 NET017 1e-6R1 NET022 VP 1e-6;XTRANSFORMEREK0 NET016 NET021 NET022 NET035 TRANSFORMEREK0;XTRANSFORMEREK1 NET019 NET017 NET035 NET027 TRANSFORMEREK1 .ends BALUN".subckt TLV1805Q1_POR_HT2 A B VCC V4 NET9 0 1V0 NET4 0 3.25/XAHDLI3 NET17 NET4 NET12 NET9 0 HPA_COMP_IDEALR0 NET17 0 10e6"T0 VCC 0 NET17 0 Z0=10e6 TD=20e-69XI1 A B NET12 SWITCH_IDEAL PARAMS: Ron=100e-3 Roff=100e6.ends TLV1805Q1_POR_HT2D.subckt TLV1805Q1_OUTPUTCIR_HT2 PD VCC VCCMAIN VEE VEEMAIN VIN VOUT.XAHDLI29 NET060 NET038 NET035 VCC VEE HPA_OR2(XAHDLI44 PD VIN NET033 VCC VEE HPA_AND2(XAHDLI27 PD VIN NET038 VCC VEE HPA_AND2Q0 NET092 NET091 NET059 PNP1Q1 NET061 NET094 NET088 NPN18XAHDLI37 NET033 NET47 VCC VEE VCCMAIN NET51 DIGLEVSHIFT8XAHDLI30 NET035 NET53 VCC VEE NET55 VEEMAIN DIGLEVSHIFT+XAHDLI31 NET53 NET63 NET55 VEEMAIN HPA_INV#XAHDLI28 PD NET060 VCC VEE HPA_INV+XAHDLI36 NET47 NET59 VCCMAIN NET51 HPA_INVV7 NET091 NET59 0V6 NET63 NET094 0V5 NET088 VEEMAIN 0V4 VOUT NET061 0V3 NET092 VOUT 0V1 VCCMAIN NET059 0V0 NET55 VEEMAIN 910e-3V2 VCCMAIN NET51 910e-3C0 VOUT 0 1.5e-12I0 VOUT 0 1e-12.ends TLV1805Q1_OUTPUTCIR_HT2A.subckt VINRANGE1 VCC VEE VIN VOUT PARAMS: VIL=100e-3 VIH=100e-3XIDVIH NET12 NET16 DiodeIdealXIDVIL NET16 NET20 DiodeIdealR0 VIN NET16 1e-3V0 NET16 VOUT 0VIL NET20 VEE {VIL} VIH VCC NET12 {VIH} .ends VINRANGE10.subckt TLV1805Q1_HT2 VINP VOUT VCC VEE PD VINM8XI84 VCC_INT VEE_INT NET21 POWER TLV1805Q1_IQADJUST_HT2'XI82 NET062 VOUT VCC TLV1805Q1_POR_HT2:XAHDLI77 NET21 NET31 NET047 0 VCC_INT VEE_INT DIGLEVSHIFT3XAHDLI75 PD NET068 NET037 VCC_INT VEE_INT HPA_COMP;XAHDLI73 NET076 VINM_INT NET21 NET047 0 NET073 HPA_COMPHYSPXI72 POWER VCC_INT VCC_INT VEE_INT VEE_INT NET17 NET062 TLV1805Q1_OUTPUTCIR_HT2MXI56 VCC_INT VEE_INT VINM VINM_INT VINRANGE1 PARAMS: VIL=-200e-3 VIH=-200e-3MXI54 VCC_INT VEE_INT VINP VINP_INT VINRANGE1 PARAMS: VIL=-200e-3 VIH=-200e-35XAHDLINV1 NET037 POWER VCC_INT VEE_INT HPA_INV_IDEALQXI40 VCC VEE POWER VEE_INT VCC_INT Iq PARAMS: IOFF=8.8e-6 ION_X1=0 ION_Y1=150e-6L+ ION_X2=1.6 ION_Y2=150e-6 ION_X3=1.9 ION_Y3=150e-6 ION_X4=12 ION_Y4=150e-6V5 VCC VCC_INT 0V6 VEE VEE_INT 0V2 NET068 VEE_INT 450e-3V4 NET047 0 1V1 NET073 0 15e-3V3 VINP_INT NET076 8e-3QXI60 VINP_INT VINM_INT Ibias PARAMS: Choice=1 Ibias=500e-12 Ioffset=25e-12 TA=270+ IbiasDrift=0 IoffsetDrift=0 Ibiasp=0 Ibiasm=0R0 NET17 0 50R14 VEE_INT PD 100e6#T0 NET31 0 NET17 0 Z0=50 TD=185e-9.ends TLV1805Q1_HT2.SUBCKT HPA_OR2 1 2 3 VDD VSScE1 4 0 VALUE = { IF( ((V(1)< (V(VDD)+V(VSS))/2 ) & (V(2)< (V(VDD)+V(VSS))/2 )), V(VSS), V(VDD) ) } R1 4 3 1 C1 3 0 1e-12.ENDS.SUBCKT HPA_AND2 1 2 3 VDD VSScE1 4 0 VALUE = { IF( ((V(1)> (V(VDD)+V(VSS))/2 ) & (V(2)> (V(VDD)+V(VSS))/2 )), V(VDD), V(VSS) ) } R1 4 3 1 C1 3 0 1e-12.ENDS.SUBCKT HPA_INV 1 2 VDD VSSAE1 3 0 VALUE = { IF( V(1)> (V(VDD)+V(VSS))/2, V(VSS), V(VDD) ) } R1 3 2 1 C1 2 0 1e-12.ENDS".SUBCKT HPA_INV_IDEAL 1 2 VDD VSSAE1 2 0 VALUE = { IF( V(1)> (V(VDD)+V(VSS))/2, V(VSS), V(VDD) ) }.ENDS8.SUBCKT DIGLEVSHIFT 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) < (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1e-12.ENDS%.SUBCKT HPA_COMP INP INN OUT VDD VSS;E1 4 0 VALUE = { IF( (V(INP) > V(INN)), V(VDD), V(VSS) ) } R1 4 OUT 1C1 OUT 0 1e-12.ENDS+.SUBCKT HPA_COMP_IDEAL INP INN OUT VDD VSS=E1 OUT 0 VALUE = { IF( (V(INP) > V(INN)), V(VDD), V(VSS) ) }.ENDS1.SUBCKT HPA_COMPHYS INP INN OUT_OUT VDD VSS VHYS/EVMID VMID 0 VALUE = { ( V(VDD) + V(VSS) )/2 }UEINPNEW INPNEW 0 VALUE = { IF( ( V(OUT) < V(VMID) ), V(INP),( V(INP) + V(VHYS) ) ) }DEOUT OUT 0 VALUE = { IF( ( V(INPNEW) > V(INN) ), V(VDD), V(VSS) ) }R1 OUT OUT_OUT 1C1 OUT_OUT 0 1e-12.ENDS.SUBCKT TRANSFORMEREK0 1 2 3 4 K1 L1 L2 0.5 L1 1 2 10uH L2 3 4 10uH.ends.SUBCKT TRANSFORMEREK1 1 2 3 4 K1 L1 L2 0.5 L1 1 2 10uH L2 3 4 10uH.ends2.SUBCKT TLV1805Q1_IQADJUST_HT2 VCC VEE VSIGNAL PDFG1 VCC 0 VALUE = { IF ( V(PD) > 0.5 & V(VSIGNAL) > 0.5, -3.56m, 0 ) }FG2 0 VEE VALUE = { IF ( V(PD) > 0.5 & V(VSIGNAL) < 0.5, -3.35m, 0 ) }.ENDS.SUBCKT AVG VIN1 VIN2 VOUT0E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 }.ENDS.SUBCKT CMRR A B C PARAMS:+ CMRR_DC = -100+ CMRR_f3dB = 50e3+ CMRR_f3dB_FudgeFactor = 3.4 .PARAM CMRR = {0-CMRR_DC}5.PARAM FCMRR = {CMRR_f3dB * CMRR_f3dB_FudgeFactor}:X1 A B C 0 CMRR_NEW PARAMS: CMRR = {CMRR} FCMRR = {FCMRR}.ENDS.SUBCKT DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT DomPoleBias VIN1 VIN2 VOUT5E1 VOUT 0 VALUE = { ( V(VIN1) + V(VIN2) ) / 2 * 1/2} R1 VOUT 0 1G.ENDS:.SUBCKT GmItail Vinp Vinm Ioutp Ioutm VEE VCC PD PARAMS:+ Choice = 2+ Gm = 3.77e-2 + SBF = 1 + ITAILMAX_X1 = { 3.0 }+ ITAILMAX_Y1 = { 10m }+ ITAILMAX_X2 = { 5.0 }+ ITAILMAX_Y2 = { 10m }+ ITAILMIN_X1 = { 3.0 }+ ITAILMIN_Y1 = { 10m }+ ITAILMIN_X2 = { 5.0 }+ ITAILMIN_Y2 = { 10m }1.PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }1.PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }0.PARAM Choice3 = { IF ( Choice == 3, 1, 0 ) }1.PARAM Choice11 = { IF ( Choice == 11, 1, 0 ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1.PARAM ITAILMAX_SLOPE = D+ { ( ITAILMAX_Y2 - ITAILMAX_Y1 ) / ( ITAILMAX_X2 - ITAILMAX_X1 ) }.PARAM ITAILMAX_INTCP = 1+ { ITAILMAX_Y1 - ITAILMAX_SLOPE * ITAILMAX_X1 }EITAILMAX ITAILMAX 0 VALUE = 4+ { ITAILMAX_SLOPE * V(VCC,VEE) + ITAILMAX_INTCP }.PARAM ITAILMIN_SLOPE = D+ { ( ITAILMIN_Y2 - ITAILMIN_Y1 ) / ( ITAILMIN_X2 - ITAILMIN_X1 ) }.PARAM ITAILMIN_INTCP = 1+ { ITAILMIN_Y1 - ITAILMIN_SLOPE * ITAILMIN_X1 }EITAILMIN ITAILMIN 0 VALUE = 4+ { ITAILMIN_SLOPE * V(VCC,VEE) + ITAILMIN_INTCP },G1 IOUTP IOUTM VALUE = { ( 1-V(PDINV) ) * (K+ Choice1 * ( LIMIT ( Gm * V(VINP,VINM) , -V(ITAILMIN), V(ITAILMAX) ) ) +V+ Choice2 * ( Gm * (V(ITAILMAX)/Gm) * TANH( V(VINP,VINM) / (V(ITAILMAX)/Gm) ) ) + d+ Choice3 * ( Gm * V(VINP,VINM) / ( 1 + Gm/V(ITAILMAX) * ABS( V(VINP,VINM) ) ) ) + e+ Choice11 * ( LIMIT ( ( Gm * EXP ( LIMIT ( SBF * ABS(V(VINP,VINM)) , -LOG(1E100), LOG(1E100) ) ) ) G+ * V(VINP,VINM) , -V(ITAILMIN), V(ITAILMAX) ) ) ++ 0 ) }.ENDS .SUBCKT Ibias VINP VINM PARAMS:+ Choice = 1+ Ibias = -10u+ Ioffset = 150n+ TA = 25+ IbiasDrift = 0+ IoffsetDrift = 0+ Ibiasp = -9.925u+ Ibiasm = -10.075u..PARAM Choice1 = { IF ( Choice == 1, 1, 0 ) }..PARAM Choice2 = { IF ( Choice == 2, 1, 0 ) }C.PARAM Ib = { Choice1 * Ibias + Choice2 * (Ibiasp + Ibiasm)/2 }D.PARAM Io = { Choice1 * Ioffset + Choice2 * ABS(Ibiasp - Ibiasm) } FEIb Ib 0 VALUE = { IbiasDrift * TEMP + ( Ib - IbiasDrift * TA ) }FEIo Io 0 VALUE = { IoffsetDrift * TEMP + ( Io - IoffsetDrift * TA ) }(GIbp VINP 0 VALUE = { V(Ib) + V(Io)/2 }(GIbm VINM 0 VALUE = { V(Ib) - V(Io)/2 }.ENDS.SUBCKT Inoise A B PARAMS:+ X = { 1m }+ Y = { 100f } + Z = { 1f }BX1 A B FEMT PARAMS: NLFF = { Y/1f } FLWF = { X } NVRF = { Z/1f }.ENDS..subckt Iq VCCmain VEEmain PD VEE VCC PARAMS:+ IOFF = { 1n }+ ION_X1 = { 0.0 }+ ION_Y1 = { 1m }+ ION_X2 = { 1.6 }+ ION_Y2 = { 1m }+ ION_X3 = { 1.9 }+ ION_Y3 = { 1m }+ ION_X4 = { 12.0 }+ ION_Y4 = { 1m }OEION_SEG1 ION_SEG1 0 VALUE = { IF ( V(VCC,VEE) <= ION_X2, 1, 0 ) }YEION_SEG2 ION_SEG2 0 VALUE = { IF ( V(VCC,VEE) > ION_X2 & V(VCC,VEE) <= ION_X3, 1, 0 ) }REION_SEG3 ION_SEG3 0 VALUE = { IF ( V(VCC,VEE) > ION_X3 , 1, 0 ) }F.PARAM ION_SEG1_SLOPE = { ( ION_Y2 - ION_Y1 ) / ( ION_X2 - ION_X1 ) }=.PARAM ION_SEG1_INTCP = { ION_Y1 - ION_SEG1_SLOPE * ION_X1 }F.PARAM ION_SEG2_SLOPE = { ( ION_Y3 - ION_Y2 ) / ( ION_X3 - ION_X2 ) }=.PARAM ION_SEG2_INTCP = { ION_Y2 - ION_SEG2_SLOPE * ION_X2 }F.PARAM ION_SEG3_SLOPE = { ( ION_Y4 - ION_Y3 ) / ( ION_X4 - ION_X3 ) }=.PARAM ION_SEG3_INTCP = { ION_Y3 - ION_SEG3_SLOPE * ION_X3 }WEION ION 0 VALUE = { V(ION_SEG1) * ( ION_SEG1_SLOPE * V(VCC,VEE) + ION_SEG1_INTCP ) +E+ V(ION_SEG2) * ( ION_SEG2_SLOPE * V(VCC,VEE) + ION_SEG2_INTCP ) +G+ V(ION_SEG3) * ( ION_SEG3_SLOPE * V(VCC,VEE) + ION_SEG3_INTCP ) }$X1 PD PDINV VCC VEE LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1KG1 VCCMAIN VEEMAIN VALUE = { V(ION) * ( 1-V(PDINV) ) + IOFF * V(PDINV) } .ends*.SUBCKT OutputCir_ILOAD VDD VSS VIMON PD$X1 PD PDINV VDD VSS LOGIC1 0 DLSINVVLOGIC1 LOGIC1 0 1AG1 VDD 0 VALUE = {IF(V(VIMON) >= 0, V(VIMON)*( 1-V(PDINV) ), 0)}AG2 VSS 0 VALUE = {IF(V(VIMON) < 0, V(VIMON)*( 1-V(PDINV) ), 0)}.ENDS1.SUBCKT OutputCir_IscDiodeIdeal NEG POS PARAMS: + IS = 1E-14 + N = 50m:G1 POS NEG_INT VALUE = { IF ( V(POS,NEG_INT) <= 0 , IS, S+ IS * ( EXP ( V(POS,NEG_INT)/25m * 1/N ) - 0 ) ) } V1 NEG_INT NEG {-N*0.8}.ENDS0.SUBCKT OutputCir_IscVlimit A B VCC VEE PARAMS:+RIsc = { 1 }+IscVsVsupply_X1 = { 3.0 }+IscVsVsupply_Y1 = { 75m }+IscVsVsupply_X2 = { 5.0 }+IscVsVsupply_Y2 = { 100m }.PARAM IscVsVsupply_SLOPE = T+ { ( IscVsVsupply_Y2 - IscVsVsupply_Y1 ) / ( IscVsVsupply_X2 - IscVsVsupply_X1 ) }.PARAM IscVsVsupply_INTCP = =+ { IscVsVsupply_Y1 - IscVsVsupply_SLOPE * IscVsVsupply_X1 }&EIscVsVsupply IscVsVsupply 0 VALUE = <+ { IscVsVsupply_SLOPE * V(VCC,VEE) + IscVsVsupply_INTCP }*E1 A B VALUE = { V(IscVsVsupply) * RIsc }.ENDSO.SUBCKT OutputCir_RecoveryAssist VINP VINM IOUTP IOUTM VCC VEE RecoverySignal*X1 RecoverySignal RS VCC VEE LOGIC1 0 DLSVLOGIC1 LOGIC1 0 1NG1 IOUTP IOUTM VALUE = { LIMIT ( 1m * V(VINP,VINM) * V(RS) , -100m, 100m ) }.ENDS).SUBCKT OutputCir_Rout B A VIMON PARAMS:+ Ro_Iout_0A = 100 + RIsc = 1 + Isc = 100m+ Islope_const = 1/100'.PARAM Islope = { Islope_const * Isc }`G1 A B VALUE = { V(A,B) * 1 / ( (Ro_Iout_0A - RIsc) * Islope / ( Islope + ABS(V(VIMON)) ) ) }.ENDS+.SUBCKT OutputCir_VOHVOLDiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS(.SUBCKT OutputCir_VOHVOL A B C PARAMS:+ VSUPPLYREF = {2.5} + VOUTvsIOUT_X1 = { ABS(0) }+ VOUTvsIOUT_Y1 = { 2.4 } + VOUTvsIOUT_X2 = { ABS(100m) }+ VOUTvsIOUT_Y2 = { 2.1 }*.PARAM VDROPvsIOUT_X1 = { VOUTvsIOUT_X1 }:.PARAM VDROPvsIOUT_Y1 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y1) }*.PARAM VDROPvsIOUT_X2 = { VOUTvsIOUT_X2 }:.PARAM VDROPvsIOUT_Y2 = { ABS(VSUPPLYREF-VOUTvsIOUT_Y2) }.PARAM VDROPvsIOUT_SLOPE = P+ { ( VDROPvsIOUT_Y2 - VDROPvsIOUT_Y1 ) / ( VDROPvsIOUT_X2 - VDROPvsIOUT_X1 ) }.PARAM VDROPvsIOUT_INTCP = :+ { VDROPvsIOUT_Y1 - VDROPvsIOUT_SLOPE * VDROPvsIOUT_X1 }$EVDROPvsIOUT VDROPvsIOUT 0 VALUE = 4+ { VDROPvsIOUT_SLOPE * V(C) + VDROPvsIOUT_INTCP }"E1 A B VALUE = { V(VDROPvsIOUT) }.ENDS!.SUBCKT PSRR VDD VSS A B PARAMS:+ PSRRP_DC = -100+ PSRRP_f3dB = 100k+ PSRRN_DC = -90+ PSRRN_f3dB = 90k".PARAM PSRRP = {0-PSRRP_DC}".PARAM PSRRN = {0-PSRRN_DC}".PARAM FPSRRP = {PSRRP_f3dB}".PARAM FPSRRN = {PSRRN_f3dB}'X1 VDD VSS A B 0 PSRR_DUAL_NEW PARAMS:$+ PSRRP = {PSRRP} FPSRRP = {FPSRRP}$+ PSRRN = {PSRRN} FPSRRN = {FPSRRN}.ENDS+.SUBCKT RecoveryCircuit_DiodeIdeal NEG POSDG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*0.01G ) }R0 POS NEG 1000G.ENDS#.SUBCKT Vinoffset POS NEG PARAMS: + TA = 25+ VOS = 500u+ DRIFT = 10u ?E1 POS NEG VALUE = { DRIFT * TEMP + ( VOS - DRIFT * TA ) }.ENDS$.SUBCKT Vinrange_DiodeIdeal NEG POSCG1 POS NEG VALUE = { IF ( V(POS,NEG) <= 0 , 0, V(POS,NEG)*100k ) }R0 POS NEG 1000G.ENDS.SUBCKT Vnoise A B PARAMS:+ X = { 1m }+ Y = { 100n }+ Z = { 5n }?X1 A B VNSE PARAMS: NLF = { Y/1n } FLW = { X } NVR = { Z/1n }.ENDS6.SUBCKT VNSE 1 2 PARAMS: NLF = 10 FLW = 4 NVR = 4.6$.PARAM GLF={PWR(FLW,0.25)*NLF/1164}.PARAM RNV={1.184*PWR(NVR,2)}/.MODEL DVN D KF={PWR(FLW,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVN D2 8 0 DVNE1 3 6 7 8 {GLF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10 R4 5 0 {RNV} R5 5 0 {RNV} R6 3 4 1E9 R7 4 0 1E9 E3 1 2 3 4 1 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDS=.SUBCKT FEMT 1 2 PARAMS: NLFF = 0.1 FLWF = 0.001 NVRF = 0.1'.PARAM GLFF={PWR(FLWF,0.25)*NLFF/1164} .PARAM RNVF={1.184*PWR(NVRF,2)}1.MODEL DVNF D KF={PWR(FLWF,0.5)/1E11} IS=1.0E-16 I1 0 7 10E-3 I2 0 8 10E-3 D1 7 0 DVNF D2 8 0 DVNFE1 3 6 7 8 {GLFF} R1 3 0 1E9 R2 3 0 1E9 R3 3 6 1E9E2 6 4 5 0 10R4 5 0 {RNVF}R5 5 0 {RNVF} R6 3 4 1E9 R7 4 0 1E9G1 1 2 3 4 1E-6 C1 1 0 1E-15 C2 2 0 1E-15 C3 1 2 1E-15.ENDSL.SUBCKT PSRR_SINGLE VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}E1 VO VI 1 GNDF 1C2 VDD VSS 10P.ENDSP.SUBCKT PSRR_SINGLE_NEW VDD VSS VI VO GNDF PARAMS: PSRR = 130 FPSRR = 1.6.PARAM PI = 3.141592.PARAM RPSRR = 1(.PARAM GPSRR = {PWR(10,-PSRR/20)/RPSRR}$.PARAM LPSRR = {RPSRR/(2*PI*FPSRR)}G1 GNDF 1 VDD VSS {GPSRR}R1 1 2 {RPSRR}L1 2 GNDF {LPSRR}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VO VI 1a GNDF 1C2 VDD VSS 10P.ENDS,.SUBCKT PSRR_DUAL VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}*E1 VO VI VALUE = {V(1,GNDF) + V(3,GNDF)}C3 VDD VSS 10P.ENDS0.SUBCKT PSRR_DUAL_NEW VDD VSS VI VO GNDF #+ PARAMS: PSRRP = 130 FPSRRP = 1.6+ PSRRN = 130 FPSRRN = 1.6.PARAM PI = 3.141592.PARAM RPSRRP = 1+.PARAM GPSRRP = {PWR(10,-PSRRP/20)/RPSRRP}'.PARAM LPSRRP = {RPSRRP/(2*PI*FPSRRP)}.PARAM RPSRRN = 1+.PARAM GPSRRN = {PWR(10,-PSRRN/20)/RPSRRN}'.PARAM LPSRRN = {RPSRRN/(2*PI*FPSRRN)}G1 GNDF 1 VDD GNDF {GPSRRP}R1 1 2 {RPSRRP}L1 2 GNDF {LPSRRP}EA 101 GNDF 1 GNDF 1(GRA 101 102 VALUE = { V(101,102)/1e6 }CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}G2 GNDF 3 VSS GNDF {GPSRRN}R2 3 4 {RPSRRN}L2 4 GNDF {LPSRRN}EC 301 GNDF 3 GNDF 1(GRC 301 302 VALUE = { V(301,302)/1e6 }CC 302 GNDF 1e3ED 3 3a VALUE = {V(302,GNDF)},E1 VO VI VALUE = {V(1a,GNDF) + V(3a,GNDF)}C3 VDD VSS 10P.ENDSC.SUBCKT CMRR_OLD VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}E1 VI VO 1 GNDF 1.ENDSB.SUBCKT CMRR_NEW VI VO VX GNDF PARAMS: CMRR = 130 FCMRR = 1.6K.PARAM PI = 3.141592.PARAM RCMRR = 1(.PARAM GCMRR = {PWR(10,-CMRR/20)/RCMRR}$.PARAM LCMRR = {RCMRR/(2*PI*FCMRR)}G1 GNDF 1 VX GNDF {GCMRR}R1 1 2 {RCMRR}L1 2 GNDF {LCMRR}EA 101 GNDF 1 GNDF 1&GRA 101 102 VALUE = {V(101,102)/1e6}CA 102 GNDF 1e3EB 1 1a VALUE = {V(102,GNDF)}E1 VI VO 1a GNDF 1.ENDS0.SUBCKT DLS 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) < (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS3.SUBCKT DLSINV 1 2 VDD_OLD VSS_OLD VDD_NEW VSS_NEWRE1 3 0 VALUE = { IF( V(1) > (V(VDD_OLD)+V(VSS_OLD))/2, V(VSS_NEW), V(VDD_NEW) ) } R1 3 2 1 C1 2 0 1p.ENDS#.SUBCKT SWITCH_IDEAL A B C PARAMS:+ Ron = 100m+ Roff = 0.1GYG1 A B VALUE = { V(A,B) * 1 / ( Roff/2 * TANH( 0 - ( 20*V(C) - 5 ) ) + Roff/2 + Ron ) } R1 A 0 1000G R2 B 0 1000G.ENDS&.MODEL VINRANGE_DIDEAL D N=1m'.MODEL RECOVERYCIRCUIT_DIDEAL D N=1m (.MODEL OUTPUTCIR_ISC_DIDEAL D N=0.1m'.MODEL OUTPUTCIR_VOHVOL_DIDEAL D N=1m .MODEL DBASIC D5.MODEL NPN1 NPN LEVEL=1 IS=1E-16 RB=25 RC=35 TF=105n5.MODEL PNP1 PNP LEVEL=1 IS=1E-16 RB=25 RC=35 TF=105nINPOUTVPVNSDINNBfT_156CF04020180522145716 NOPCB (GND)BfT_156D01E020180522145721 NOPCB (GND)Bf`T_16708C6020180522150558 NOPCB (GND)BfhT_1670924020180522150609 NOPCB (GND)8?F-_@EMbP??ư>*dd?Y@VG1[dddd$@?.A.A.AeAMbP?@@?,C6>ư> $ 4@D@ =B?& .>??ư>ư>ư>ư>ư>ư>?I@?I@?I@& .>#i;@& .>-q=ư>MbP?-q=MbP?vIh%<=@@D@& .>?MbP?4@?{Gz?ꌠ9Y>)F@?+= _BKH9$@Y@& .>ư>?.AMbP??????I@Default analysis parameters. These parameters establish convergence and sufficient accuracy for most circuits. In case of convergence or accuracy problems click on the "hand " button to Open other parameter sets.?Xd I@nMbP?{Gz?{Gz?MbP????|=Hz>}Ô%ITNoname