SLYW038D September 2014 – April 2025 AFE030 , AFE031 , AFE032 , ALM2402-Q1 , LMC6035-Q1 , LMV601 , LMV602 , LMV604 , LMV611 , LMV612 , LMV614 , LMV881 , OPA1602 , OPA1604 , OPA1612 , OPA1612-Q1 , OPA1622 , OPA1652 , OPA1654 , OPA1662 , OPA1662-Q1 , OPA1664 , OPA1688 , OPA170 , OPA170-EP , OPA171-Q1 , OPA172 , OPA180 , OPA188 , OPA191 , OPA192 , OPA197 , OPA211-EP , OPA2170 , OPA2171 , OPA2171-EP , OPA2171-Q1 , OPA2172 , OPA2180 , OPA2188 , OPA2192 , OPA2211-EP , OPA2211-HT , OPA2227-EP , OPA2277-EP , OPA2313 , OPA2314 , OPA2314-EP , OPA2314-Q1 , OPA2316 , OPA2317 , OPA2320-Q1 , OPA2322-Q1 , OPA2376-Q1 , OPA2625 , OPA313 , OPA314 , OPA316 , OPA317 , OPA320 , OPA322 , OPA348-Q1 , OPA355-Q1 , OPA4170 , OPA4171 , OPA4171-Q1 , OPA4172 , OPA4180 , OPA4188 , OPA4192 , OPA4277-EP , OPA4313 , OPA4314 , OPA4316 , OPA4317 , OPA4322 , OPA4322-Q1 , OPA549-HIREL , OPA564-Q1 , OPA625 , SM73307 , SM73308 , TLC2274-HT , TLE2141-Q1 , TLV2314 , TLV2316 , TLV2333 , TLV27L2-Q1 , TLV314 , TLV316 , TLV333 , TLV4314 , TLV4316 , TLV4333
Series inductors
Parallel inductors
Two parallel inductors
Where
Lt = equivalent total inductance
L1, L2, L3…LN = component inductance
Instantaneous voltage across an inductor
Where
v = instantaneous voltage across the inductor
L = inductance in henries (H)
= instantaneous rate of current change
Energy stored in an inductor
Where
E = energy stored in an inductor in joules (J)
I = current in amps
L = inductance in henries (H)
General relationship
Where
VC = voltage across the capacitor at any instant in time (t)
VS = the source voltage charging the RC circuit
t = time in seconds
τ = RC, the time constant for charging and discharging capacitors
Graphing Equation 37 produces the capacitor charging curve below. Note that the capacitor is 99.3% charged at five time constants. It is common practice to consider this fully charged.
General Relationship
Where
VC = voltage across the capacitor at any instant in time (t)
Vi = the initial voltage of the capacitor at t = 0s
t = time in seconds
τ = RC, the time constant for charging and discharging capacitors
Graphing Equation 39 produces the capacitor discharge curve below. Note that the capacitor is discharged to 0.7% at five time constants. It is common practice to consider this fully discharged.
General equation for capacitor voltage current
For constant current
Where
IS = constant current source in amps (A)
VOUT = voltage developed across the capacitor in volts (V)
CL = load capacitance in farads (F)
t = time in seconds (s)